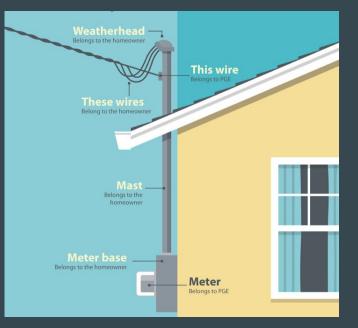
New Design Concept for Residential Electric Meter Adapter Sdmay20-28 https://sdmay20-28.sd.ece.iastate.edu/

$\bullet \bullet \bullet$

Derek Drees, Zane Heifner, Brenden Koenighain, Austin Meyer

Client: Alliant Energy


Faculty Advisor: Dr. Zhaoyu Wang

Project Plan

 $\bullet \bullet \bullet$

Project Overview

- Alliant Energy, an energy provider, is converting from overhead distribution lines to underground.
- We were tasked with designing an adapter for residential electric meter sockets, that converts from existing overhead feeds to a new underground connection.
- The scope of our project was to create a design, 3D model, and prototype by the end of the year.

https://www.portlandgeneral.com/outages/pow er-out/pge-certified-electrical-contractors

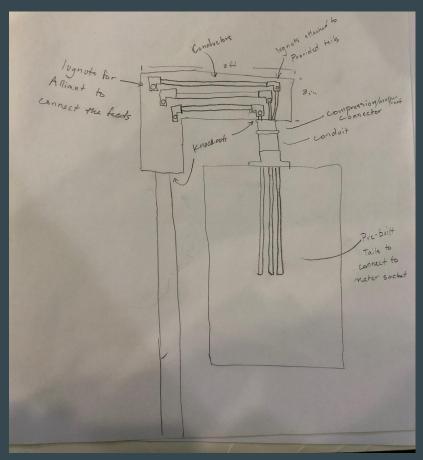
Problem Statement

- Alliant Energy's current solutions to this problem
 - Unsightly
 - Bulky
 - Expensive

• Possible code violations/cause for inspection.

• Contractor involvement

Meter Base Adapters



Junction Box

Ell Adapter

Conceptual Sketch

- Will mount onto home and convert older overhead connections to underground feeds
- Prebuilt raceways across the top of our adaptor to connect old meter socket wires to new underground feeds
- Eliminates wire bend issue with the current solution

Requirements (Technical/Functional)

- Cannot result in a reinspection of the socket
 - $\circ\,$ This causes entire home to be required to be up to code
 - Will be on the homeowner's responsibility to pay for this
- Must be able to match appropriate current ratings
- Terminal connections must be able to fit 1/0, 4/0, and 350 MCM wire to be universal for Alliant Energy
- Terminal connections must meet minimum distance of 1.5" from edge of enclosure
- Bus bar must be code compliant
- 1.5", 2", and 2.5" knockouts for conduit connectors

Constraints and Considerations

- Reduce cost
 - Manufacturing
 - Installation
- Aesthetically unobtrusive on house
- Biggest available wire is 350 MCM, so our project is designed to handle the maximum ampacity of a 350 MCM wire
- Enclosure modification
 - Sized to contain all internal components
 - Knockouts to bring in conduit
 - Locking door

Potential Risks and Mitigation Plan

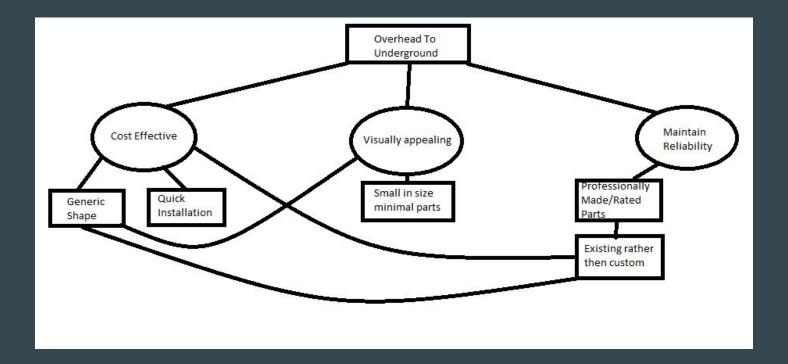
- Frequent feedback from Alliant Energy to fulfill the client's criteria
- Contacted two seperate state inspectors on potential code violations and discussed potential solutions
- Had electrical contractors review different designs to foresee future installation issues
- Reviewed model and prototype design with turnkey panel manufacturing company to ensure proper and effective design

Resource/Cost Estimate

• Initial design concept cost estimated ~\$2,500 per unit

- \$2,000 for manufacturing parts and labor
- \circ \$500 for installation
- Up to \$2,000 extra for code updates

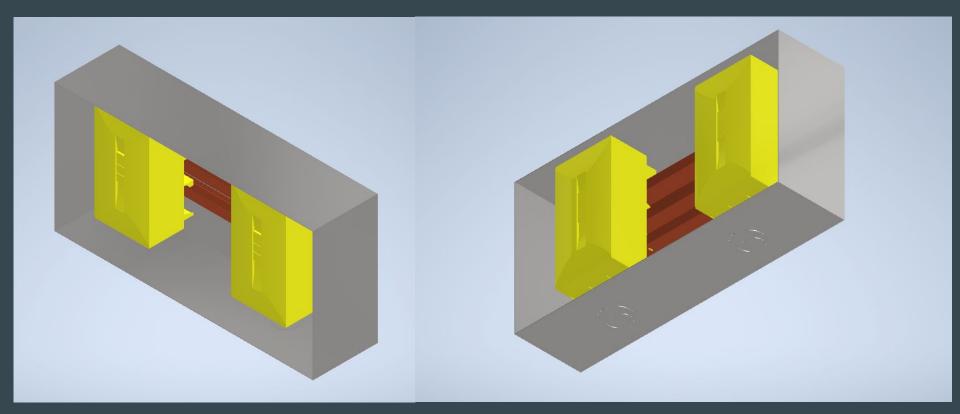
- Final design concept cost estimated ~\$1,000 per unit
 - Buying in bulk will bring this price down
 - Labor cost will also be reduced by removing contractor labor

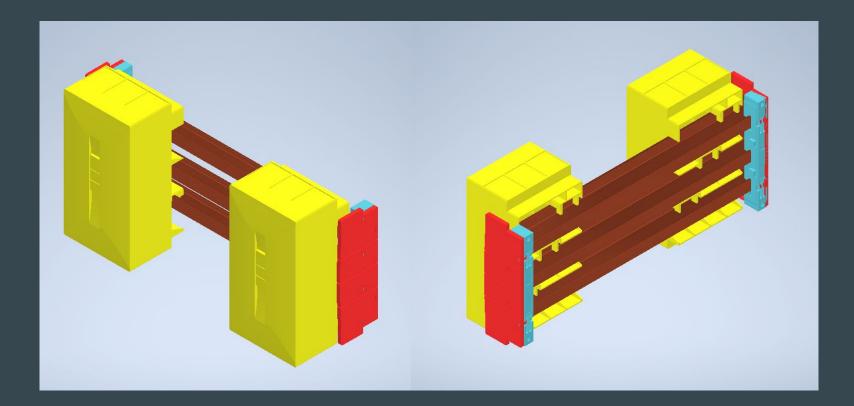

Project Milestones & Schedule

Gantt Chart	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	6	27	28	29 30	3	1 32	33	34
Task	8-Sep	15-Sep	22-Sep	29-Sep	6-Oct	13-0ct	20-Oct	27-Oct	3-Nov	10-Nov	17-Nov	24-Nov	1-Dec	8-Dec	15-Dec	22-Dec	29-Dec	5-Jan	12-Jan	19-Jan	26-Jan	2-Feb	9-Feb	16-Feb	23-Feb	1-Ma	ar 8-M	ar 15-N	lar 22-M	ar 29-Ma	5-Ap	r 12-Apr	19-Apr	26-Apr
1: Initial web meeting																																		
1: Compile project needs																																		
1: Meeting in Cedar Rapids																																		
1: Update project needs																																		
1: Begin brainstorming																																		
2: Meeting in Ames Research Park																																		
2: Brainstorming feedback from Alliant																																		
3: Review NEC codebook																																		
3: Brainstorming with feedback from inspector									-																									
4: Develop viable ideas																																		
4: Analyze viable ideas																																		
4: Compare viable ideas									1																									
5: Feedback from Alliant																																		
5: Verify modified design with Alliant																																		
6: Learn what material Alliant can provide																																		
6: Develop advanced chosen design																																		
6: Develop advanced modified design																																		
7: Receive feedback																																		
7: Revise design																																		
7: Recieve feedback													-																					
8: Create final design																																		
8: Conduct additional research																																		
9: Design final model																																		
10: Contact Alliant for protoype build																																		
10: Research parts & manufacturers																																		
11: Produce prototype (Cancelled due to COVID-19)																																		
11: Test Prototype (Cancelled due to COVID-19)																											Ţ.							

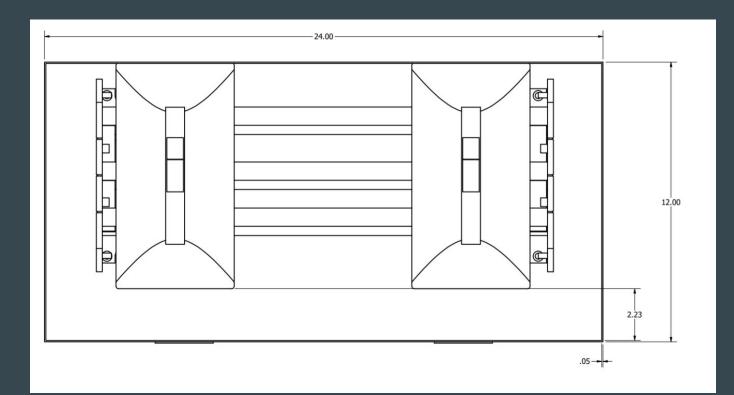
System Design

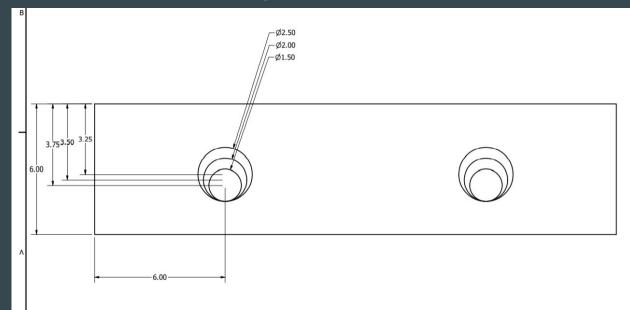
 $\bullet \bullet \bullet$


Functional Decomposition

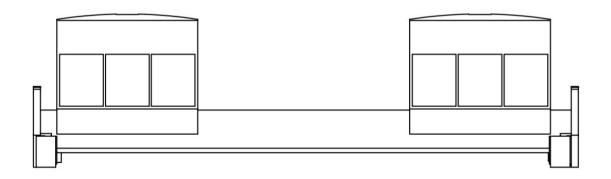

Detailed Design : Bill of Materials

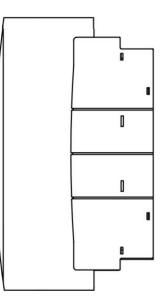
Part #	Manufacturer	Description	Qty
A122406LP	Hoffman	Enclosure 24 x12 h x6 d	1
9342.300'	Rittal	Adapter	2
3524.000'	Rittal	Busbar	3
9341.070'	Rittal	End Cap	2
9341.000'	Rittal	Support	2


Detailed Design : 3D Model


Detailed Design : 3D Model

Detailed Design : Layout




Detailed Design : Layout

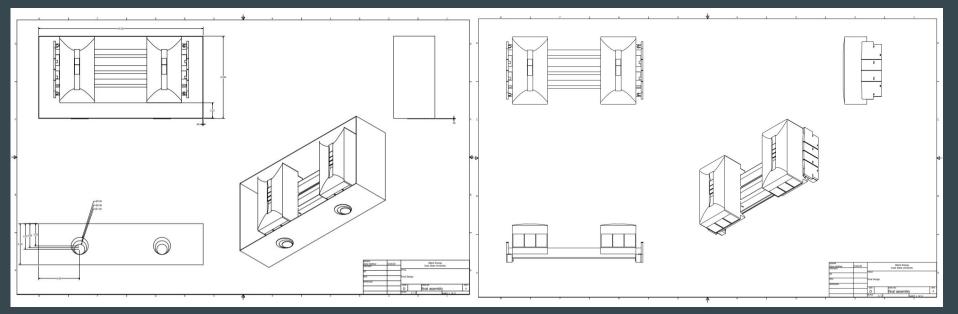
Detailed Design : Layout

HW/SW/Technology Platforms Used

• Software

- AutoCAD Electrical 2D layout
- AutoDesk Inventor 3D model

• Hardware


- Busbar rittal 3524.000
- Adapter rittal 9342.000
- \circ Endcap rittal 9341.070
- Support rittal 9341.000
- Hoffman enclosure 24l x 12h x 6d

Test Plan

- **Testing cancelled due to COVID-19**
- Consistent feedback from Alliant Energy throughout design process.
- Designed using readily available code compliant parts.
- Prototype planned to be developed by a professional panel manufacturer.
- Installation timing comparison through industry professionals.

Prototype Implementations

- **Prototype manufacturing cancelled due to COVID-19**
- Initial model of our prototype has been approved for manufacturing.
- We have researched different part types to ensure code compliance.

Engineering Standards and Design Practices

- National Electric Code 2017: section 110.28
- NFPA (National Fire Protection Association)
- Spoke with state inspectors
- Used stock parts from reputable source to ensure code compliance
- Feedback from industry professionals

Conclusion

 $\bullet \bullet \bullet$

Task Responsibility/Contributions of Each Project Member

- Derek Drees (Research)
 - Research, communication with professionals/experts, brainstorming, verification.
- Zane Heifner (Communication)
 - Communication/coordination between team, advisor, industry professionals, and client, drafting of 3D and 2D models
- Brenden Koenighain (Documentation)
 - Made schedule and division of tasks, compiles and manages all documents, brainstorming, creating an economic analysis of mass production of our design to evaluate cost effectiveness.
- Austin Meyer (Website and Testing)
 - Management of team website, producing weekly updates, brainstorming, verification, creating a testing plan to evaluate the ease of installation and therefore cost effectiveness of labor.

Future Prospect of the Project

• Next step is to manufacture a prototype

• First article build will provide more accurate mass production cost

• Design should be updated again after prototype build

• Future code updates could affect what specific parts were selected

Thank You

 $\bullet \bullet \bullet$